DIE CABIBBO-ANOMALIE

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Misha Gorshteyn, Rainer Wanke Institut für Physik **Bachelor-Vortragsreihe**

14. Mai 2024

Rainer Wanke

Bachelor-Vortragsreihe 14. Mai 2024

Neutronen

Neutron-Lebensdauer

Neutron-Zerfall

Fermis Goldene Regel: Zerfallsrate = (Lebensdauer)⁻¹ = $2\pi/\hbar \times \ddot{U}$ bergangswahrscheinlichkeit

$$\Gamma = 1/\tau = 2\pi/\hbar \times$$

Beim Neutronzerfall $n \rightarrow p e^- \bar{v}$:

(Fornal, Grinstein, MPL A 35 (2020) 31, 2030019)

Übergangswahrscheinlichkeit × Zahl der Zustände |Matrixelement|² × Phasenraumfaktor Physik Kinematik

$\tau_n^{-1} = \frac{G_F^2(mc^2)^5}{2\pi^3\hbar(\hbar c)^6} V_{ud}^2 (1+3\lambda^2) f(1+\delta_R')(1+\Delta_R)$

Neutron-Zerfall

Bottle versus Beam

Bottle Neutronen werden in eine Flasche gefüllt und nach einiger Zeit nachgezählt.

Rainer Wanke

Beam

"Ultrakalte" Neutronen werden kollimiert und gezählt, wie viele Protonen entstehen.

JGU

Bottle versus Beam

Bottle Neutronen werden in einen Behälter gefüllt und ständig nachgezählt.

(UCNτ Collaboration, PRL 127 (2021) 162501)

Beam Neutronen werden kollimiert und gezählt, wie viele Protonen entstehen.

(Nico *et al.*, PRC 71 (2005) 055502)

Neutrons in the Bottle

UCN τ -Experiment in Los Alamos (USA):

ultrakalte Neutronen $E_{kin} \lesssim 180 \text{ neV} \ (\triangleq 6 \text{ m/s!})$

- (1) Neutronen werden polarisiert und in ein "Halbach Array" gefüllt (fill).
- (2) Neutronen mit $E_{kin} > 38 \text{ neV} (\triangleq 2,7 \text{ m/s})$ werden entfernt (clean).
- (3) Kurze Speicherzeit (store).
- (4) Szintillator-Array wird in drei Stufen heruntergefahren zum Zählen der verbleibenden Neutronen (1,2,3).

Bottle versus Beam

Warum ist der Unterschied interessant?

Wenn es kein experimentelles Problem gibt: *Es gibt eine physikalische Ursache.*

- Bottle zählt alle zerfallenen Neutronen.
- Beam zählt entstandene Protonen.

Was, wenn Neutronen auch in unbekannte, nicht sichtbare Teilchen zerfallen?

Nicht bei jedem Zerfall (gemessen in Bottle) tritt ein Proton auf (gemessen in Beam).

Weniger $n \rightarrow p e^{-} \bar{v}$ als alle Zerfälle ergeben zu lange gemessene Lebensdauer!

Mögliche Zerfälle in Dunkle-Materie-Teilchen:

(Fornal, Grinstein)

 $\mathcal{L}_2 = \left(\lambda_q \,\epsilon^{ijk} \,\overline{u_{L_i}^c} \, d_{R_j} \Phi_k + \lambda_\chi \Phi^{*i} \bar{\tilde{\chi}} \, d_{R_i} + \lambda_\phi \, \bar{\tilde{\chi}} \, \chi \, \phi + \text{h.c.}\right)$ $-M_{\Phi}^{2} |\Phi|^{2} - m_{\phi}^{2} |\phi|^{2} - m_{\chi} \, \bar{\chi} \, \chi - m_{\tilde{\chi}} \, \bar{\tilde{\chi}} \, \tilde{\chi}$

Details sehr kompliziert, aber grundsätzlich:

Halbwertszeit $t_{\frac{1}{2}} \propto (G_F^2 |V_{ud}|^2)^{-1}$

- 220 unterschiedliche Messungen von insgesamt 15 Kernübergängen mit Halbwertzeiten zwischen 0.08 s und 70 s.
- Zurzeit noch die genaueste $|V_{\nu d}|$ -Bestimmung.

V_{ud} aus Neutronzerfall

- **Bottle:** $|V_{ud}| = 0.9741(4)$
- Beam: $|V_{ud}| = 0.9685(8)$

$$0^+ \rightarrow 0^+$$
:

 $|V_{ud}| = 0.9737(3)$

Rainer Wanke

Bachelor-Vortragsreihe 14. Mai 2024

Kaonen

PRISMA+

Rainer Wanke

		AD	Antiproton Decelerator
PS	Proton Synchrotron	n-TOF	Neutron Time Of Flight
SPS	Super Proton Synchrotron	AWAKE	Advanced Wakefield Experiment
LHC	Large Hadron Collider	CTF3	CLIC Test Facility 3

SUISSE

FRANCE

= CMS

NA62-Experiment

Beam

second lines.

NA62-Experiment

Bachelor-Vortragsreihe 14. Mai 2024 JGU

Proton-Target

Rainer Wanke

Beryllium-Stab mit 40 cm Länge und 2 mm Durchmesser.

Bachelor-Vortragsreihe

14. Mai 2024

Zerfallskanal	Häufigkeit
$K^+ \rightarrow \mu^+ \nu$	(63.56 ± 0.11) %

$K^+ \rightarrow Myon + Neutrino$

Zerfallskanal	Häufigkeit
$K^+ \rightarrow \mu^+ \nu$	(63.56 ± 0.11) %
$K^+ \rightarrow \pi^+ \pi^0$	(20.67 ± 0.08) %

$K^+ \rightarrow 2$ Pionen

Zerfallskanal	Häufigkeit
$K^+ \rightarrow \mu^+ \nu$	(63.56 ± 0.11) %
$K^+ ightarrow \pi^+ \pi^0$	(20.67 ± 0.08) %
$K^+ ightarrow \pi^0 e^+ u$	(5.07 ± 0.04) %
$K^+ \rightarrow \pi^0 \mu^+ \nu$	(3.35 ± 0.03) %

 $K^+ \rightarrow 3$ Pionen

Zerfallskanal	Häufigkeit
$K^+ \rightarrow \mu^+ \nu$	(63.56 ± 0.11) %
$K^+ ightarrow \pi^+ \pi^0$	(20.67 ± 0.08) %
$K^+ ightarrow \pi^0 e^+ u$	(5.07 ± 0.04) %
$K^+ \rightarrow \pi^0 \mu^+ \nu$	(3.35 ± 0.03) %
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	(5.58 ± 0.02) %
$K^+ ightarrow \pi^+ \pi^0 \pi^0$	(1.76 ± 0.02) %

Kaon-Zerfälle $K \rightarrow \pi e v, K \rightarrow \pi \mu v$ VG_F *e*⁺, μ⁺ v_e, v_μ **K**+ $\sqrt{G_F} \cdot V_{us}^*$ Das muss ū gemessen werden! π^0 **F**partial

Rainer Wanke

Rainer Wanke

Ein bisschen spezielle Relativitätstheorie...

Klassisch:

Energie: $E = \frac{1}{2} m v^2 = \frac{p^2}{(2m)}$

Spezielle Relativitätstheorie:

Gesamtenergie: $E = \gamma m c^2 = E_0 + E_{kin}$ $p = \gamma m v = \beta \gamma m c$ Impuls: $E^2 = \gamma^2 m^2 c^4 = m^2$ Damit: $= m^2 c^4 + (1 - (1 - 1))$ $= m^2 c^4 + \beta^2 \gamma^2$

Ruhemasse und Ruheenergie sind äquivalent: $E_0 = m c^2$ (mit m = Ruhemasse)

$$\int c^{2} c^{4} + (\gamma^{2} - 1) m^{2} c^{4} - \beta^{2}) / (1 - \beta^{2}) m^{2} c^{4} = m^{2} c^{4} + \beta^{2} / (1 - \beta^{2}) m^{2} c^{4} = m^{2} c^{4} + \beta^{2} c^{2}$$

Energie-Impuls-Beziehung für relativistische Teilchen

Ein bisschen spezielle Relativitätstheorie...

- Energie-Impuls-Beziehung für relativistische Teilchen: $E^2 = m^2 c^4 + p^2 c^2$
- In der Teilchenphysik zumeist: Lichtgeschwindigkeit c := 1 $E^2 = m^2 + p^2$
- **Einheiten:** [Energie] = [Impuls] = [Masse] = GeV (auch: [Impuls] = GeV/c, [Masse] = GeV/c²) Beispiel: $m_{Proton} \approx 1 \text{ GeV}, p_{Proton} = 400 \text{ GeV} \text{ im CERN SPS} \implies E_{Proton} \cong 400 \text{ GeV} = p_{Proton}!$

Ein bisschen spezielle Relativitätstheorie...

Radioaktive Zerfälle: Teilchen A (Masse m_{Δ}) zerfällt in Teilchen B (Masse m_{B}) und Teilchen C (Masse m_{B}): **Beispiel:** Zerfall in Ruhe von $\pi^0 \rightarrow \gamma \gamma$ (2 Photonen) $m_{\pi} = 135 \text{ MeV}, m_{\gamma} = 0$ $\implies m_{\pi}^{2} = E_{\pi}^{2} = (E_{\gamma 1} + E_{\gamma 2})^{2} = E_{\gamma 1}^{2} + E_{\gamma 2}^{2} + 2 E_{\gamma 1} E_{\gamma 2}^{2}$ $= \vec{p_{\gamma 1}^{2}} + \vec{p_{\gamma 2}^{2}} + 2 |\vec{p_{\gamma 1}}| |\vec{p_{\gamma 2}}| = 4 p_{\gamma}^{2}$ $\implies p_{\gamma} = \frac{1}{2} m_{\pi} = 67,5 \text{ MeV}$

- $A \rightarrow B + C$ mit $m_{\Delta} \ge m_{B} + m_{C}$ wegen Energieerhaltung.

Weiteres Beispiel: Zerfall in Ruhe von $K^+ \rightarrow \pi^+ X$ (X nicht gemessen) $\implies m_x^2 = \dots$ längere Rechnung ... =

$$m_x^2 \approx m_K^2 \left(1 - \frac{p_\pi}{p_K}\right) + m_\pi^2 \left(1 - \frac{p_K}{p_\pi}\right) - p_K$$

Wichtig:

→ Die Teilchensorte muss identifiziert werden!

Falls Tochterteilchen kein π^+ , funktioniert die Rechnung die Rechnung nicht mehr! Stattdessen muss die Masse des tatsächlichen Tochterteilchens eingesetzt werden.

Annahme: Tochterteilchen ist ein Myon.

Annahme: Tochterteilchen ist ein Pion.

Was sehen wir?

Annahme: Tochterteilchen ist Myon

Was sehen wir, wenn wir genauer hinschauen?

Annahme: Tochterteilchen ist ein Myon.

Annahme: Tochterteilchen ist ein Pion.

Wie sieht's aus?

- **Messung von NA62** noch nicht fertig (Mainzer Doktorand schuftet noch...) \rightarrow Wird genaueste Messung der $K \rightarrow \pi e v$ -, $K \rightarrow \pi \mu v$ -Zerfallsraten.
- Bisherige Messungen auch schon sehr gut:

 $|V_{\mu s}| = 0.22330(53)$

• Weitere Messung: $K \rightarrow \mu v$ - und $\pi \rightarrow \mu v$ - Zerfallsraten \rightarrow Ergibt $|V_{\mu s}| / |V_{\mu d}|$: $|V_{us}/V_{ud}| = 0.23108(51)$

Und nun alles zusammen gepackt...:

- V_{ud} = 0.97384(26)aus **β-Zerfällen**
- $V_{\mu\nu}$ = 0.22330(53) aus $K \rightarrow \pi e \nu (\pi \mu \nu)$
- $|V_{\mu s} / V_{\mu d}| = 0.23108(51)$ aus $K \to \mu v / \pi \to \mu v$

Globaler Fit:

 $V_{ud} = 0.97378(26)$ $V_{\mu s} = 0.22422(36)$ χ^2 /ndf = 6.4/2 (4.1%) $\Delta_{\rm CKM} = -0.0018(6)$ **-2.8**σ

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2$ = 1 + Δ_{CKM} **Abweichung vom**

Standardmodell

Rainer Wanke

Bachelor-Vortragsreihe 14. Mai 2024

