Das Mu3e-Experiment: Auf der Suche nach seltenen Zerfällen

Niklaus Berger

Institut für Kernphysik JGU Mainz

Übersicht

- Was suchen wir? Leptonflavourverletzung
- Herausforderungen Raten und Auflösung
- Technologie
 Dünne Pixelkamera
- Zusammenbau
 - Von der Technologie zum Experiment

Leptonflavourverletzung

Elektron e⁻/e⁺

Elektron e⁻/e⁺

Elektron -Neutrino

Normaler Muon-Zerfall:

e

Beobachtet bei Neutrinos:

Indirekte Suche nach neuen Teilchen Sehr schwer oder sehr schwach wechselwirkend

Über seltene Prozesse können wir über die Physik bei sehr grossen Massen lernen

weit darüber hinaus, was Beschleuniger (z.B. LHC) direkt sehen können

Was wissen wir schon?

Suche mit dem SINDRUM-Experiment (1988)

Weniger als einer in Tausend Milliarden (10¹²) Zerfällen des Muons ist in drei Elektronen

Suche mit dem SINDRUM-Experiment (1988)

Weniger als einer in Tausend Milliarden (10¹²) Zerfällen des Muons ist in drei Elektronen

Entsprechung: Finde eine Nadel in einer Million Heuhaufen

Wir wollen einen grossen Schritt weiter gehen:

Suche des Zerfalls nach drei Elektronen in Zehn Millionen Milliarden (10¹⁶) Zerfällen des Muons

Entsprechung: Finde eine Nadel in 10¹⁰ Heuhaufen (~ ein Haufen für jeden Menschen)

> Finde ein graues Haar unter allen Menschen, die je gelebt haben

Herausforderungen: Raten und Auflösung

Um in einem Jahr 10¹⁶ Muon-Zerfälle zu sehen,

muss jede Sekunde eine Milliarde Muonen zerfallen

Paul Scherrer Institut in der Schweiz: Produziert genügend Muonen mit dem intensivsten Protonstrahl der Welt

Practical Course in Particle Physics

at the Paul Scherrer Institut (PSI, Switzerland), Summer 2024

Perform a real particle physics experiment at a PSI beam-line.

Learn experimental particle physics hands-on.

Join a group of 12-15 students from ETH Zürich and Heidelberg and Mainz Universities for one week of preparartions in Heidelberg and two weeks of beam time at the world's most powerful accelerator at PSI.

Design and build your experiment from available detector components, take data during a 24/7 beam

Wir müssen "unseren" Zerfall von allem anderen -"Untergrund" - unterscheiden können

- $\mu^+ \rightarrow e^+ e^- e^+$
- Muon zerfällt in Ruhe
- Zwei Positronen, ein Elektron
- Von einem Punkt Vertex
- Zur selben Zeit
- Energieerhaltung: Elektron- und Positronenergien ergeben Muonmasse

(wir messen die Impulse)

J

Zufälliger Untergrund

 Positronen aus mehreren Muonzerfällen plus ein Elektron aus dem Detektormaterial (Bhabhastreuung)

• Wie kann ich das unterscheiden?

Sehr gute Vertexauflösung Sehr gute Zeitauflösung Sehr gute Impulsauflösung

Der gemeine Untergrund: "Interne Konversion"

Brauche eine super Impulsmessung

• Erlaubter Zerfall mit zwei Neutrinos

 $\mu^{+} \rightarrow e^{+}e^{-}e^{+}\nabla\overline{\nabla}$

- Neutrinos sieht der Detektor nicht
- Es fehlt etwas Energie/Impuls

Wir messe ich Impulse sehr genau?

(für eine Milliarde Elektronen pro Sekunde)

 Verwende ein starkes Magnetfeld (hier: 1 Tesla, Solenoid, 3 m lang, 1 m Innendurchmesser)

- Verwende ein starkes Magnetfeld (hier: 1 Tesla, Solenoid, 3 m lang, 1 m Innendurchmesser)
- Geladene Teilchen werden je nach Impuls mehr oder weniger abgelenkt
- Messe Krümmung (mindestens drei Punkte), kenne Magnetfeld: Impulsmessung
- Auch: Vorzeichen der Ladung Elektron oder Positron

Kleine Pixel

Wie gut können wir Impulse messen?

Wie gut können wir Impulse messen?

Leicht, schnell, hochauflösend: Der Mu3e Pixeldetektor

Im Wesentlichen eine Digitalkamera...

Im Wesentlichen eine Digitalkamera...

- Mit 300 Millionen Pixeln
- Für 20 Millionen Bilder pro Sekunde
- Dünner als ein Haar

Wie geht das?

- Schwarz-weiß Bilder
- Elektronik in den Pixeln: Nur schwarze Pixel melden sich
- Sehr schnelle Verbindungen nach aussen - total ~1 Tbit/s

N-well	E field > 1
P-substrate	Particle

HV-MAPS Pixel Sensoren

HV-MAPS Pixel Sensoren

Chipdesign: Ivan Perić vom KIT (Karlsruhe) High-Voltage Monolithic Active Pixel Sensors

"Hochspannung":

- Prozess aus der Automobilindustrie
- Schnelle Ladungssammlung

Monolithic Active:

- Analog- und Digitalelektronik auf dem Chip
- Strukturgröße 180 nm

Pixel Sensor:

• 80 x 80 µm große Pixel

Aktiver Bereich nur ca. 30 µm tief

Viele Prototypen bei uns im Labor (10 Jahre Entwicklung) - jetzt finaler Sensor verfügbar

- Ca. 2 x 2 cm groß
- Massenproduktion letztes Jahr

- Elektronen sollen im Silizium so wenig wie möglich streuen
- Chips können auf unter 50 µm gedünnt werden (Chipkarten)
- Wir lernen den Umgang mit grossen, dünnen Chips...

Mechanik

50 µm Silizium ist nicht mehr selbsttragend

- Brauche Tragestruktur, plus elektrische Anschlüsse
- Möglichst wenig zusätzliches Material

Wie ordne ich die Pixel an?

Niklaus Berger – Mu3e – Seite 54

Zeitmessung: Scintillierende Fasern

- 3 Lagen von 250 µm szintillierenden Fasern - auch sehr dünn
- Auslese mit Silizium-Photomultipliern und einem selsbt entwickelten Chip (MuTrig)
- Zeitauflösung < 0.5 ns

Niklaus Berger – Mu3e – Seite 66

Zeitmessung: Szintillierende Kacheln

- ~ 0.5 cm^3 szintillierende Kacheln
- Auslese mit Silizium-Photomultipliern und einem selsbt entwickelten Chip (MuTrig)

• Zeitauflösung ~ 80 ps

Zeitmessung: Szintillierende Kacheln

- Pixel chips: ~ 200 mW/cm² total etwa 2 KW
- So wenig wie möglich zusätliches Material Heliumgas bei ~ 0°C
- Brauche etwa 50 g/s (~280 Liter/s bei STP...)
- Helium ist schwierig zu pumpen
- Kleine, sehr schnelle Turbokompressoren

Zusammenbau

- Komplettes CAD mit Leitungen und Drähten
- Es ist super eng...

3D-gedruckte Detektormodelle um den Zusammenbau zu üben
Zusammenbau und Kühlung wurde mit heizbarem Prototypen getestet

Auslesesystem

Niklaus Berger – Mu3e – Seite 78

GPU-Rekonstruktion

- GPU-Rekonstruktion auf Game-Karten
- > 10⁹ Spurfits/s per GPU (Nvidia GTX 980)
- Zwölf GTX 1080Ti sind ausreichend um 10⁸ Muonzerfälle/s zu verarbeiten
 - ~ 8 Jahre vergehen

- Nur vier RTX 4090 f
 ür Mu3e phase I n
 ötig
- Phase I?

Mehr und mehr Muonen

- PSI liefert im Moment bis zu 10⁸ Muonen/s
- Wir bauen ein Experiment (Phase I) dafür
- PSI baut 2027/28 eine neue Strahlline, die High-intensity Muon Beamline (HiMB)
- Wir müssen beim Experiment dann nochmal nachlegen... - Mu3e Phase II

Simulation für Phase I Mu3e Phase I Simulation p_{cms} [MeV/c] $eeev\overline{v}$ 1 dot: 1 event per $10^{18} \mu$ stops 10 **Michel + Bhabha** 1 dot: 1 event per $10^{16} \mu$ stops 5 $\mu \rightarrow eee$ 95% 90% 80% 50% 0 105 110 100 $m_{rec} [MeV/c^2]$

Sensitivität $(a) = 10^{-11}$ $(a) = 10^{-11}$ $(a) = 10^{-12}$ $(a) = 10^{-12}$ 10⁸ muon stops/s Mu3e Phase I 13.0% signal efficiency **SINDRUM 1988** 10^{-13} 95% C.L. SES 10^{-14} 90% C.L. 2×10^{-15} 10^{-15} 100 200 300 400 0

Data taking days

Zusammenfassung/Ausblick

Das Mu3e-Experiment sucht nach dem Zerfall $\mu \rightarrow eee$

- Sensitivität 1 in 10¹⁶
- Eine Milliarde Zerfälle pro Sekunde
- 300 Millionen Pixel
- Sensoren so dünn wie ein Haar

Viele weitere spannende Technologien...

 Zusammenbau und Inbetriebnahme laufen

Team von Instituten aus Deutschland, der Schweiz und England