22.07.2022
XENONnT, der neueste Detektor der internationalen XENON-Kollaboration, zeigt ein bisher unerreicht niedriges Niveau an Untergrundsignalen, das eine empfindliche Suche nach neuen, sehr seltenen Phänomenen ermöglicht. Erste Ergebnisse klären nun ein aufregendes Signal, das im Vorgängerexperiment XENON1T beobachtet wurde, und setzen starke Grenzen für verschiedene Szenarien neuer Physik.
Das XENONnT-Experiment wurde entwickelt, um nach den sehr schwer nachweisbaren Teilchen der dunklen Materie zu suchen. Der Detektor enthält fast 6000 Kilogramm extrem reines flüssiges Xenon zum Nachweis von Teilchenwechselwirkungen. Um ihn vor kosmischer Strahlung und natürlicher Radioaktivität zu schützen, ist er tief unter der Erde im Untergrundlabor Laboratori Nazionali del Gran Sasso (LNGS) in Italien installiert. Der eigentliche Xenon-Detektor befindet sich in einem großen Wassertank, der mit Lichtsensoren ausgestattet ist, um Myonen und Neutronen abzuschirmen oder nachzuweisen. Trotz der schwierigen Pandemie-Situation wurde XENONnT zwischen Frühjahr 2020 und Frühjahr 2021 gebaut und anschließend in Betrieb genommen. XENONnT nahm zwischen Juli und November 2021 die ersten wissenschaftlichen Daten im Umfang von 97,1 Tagen auf.
Für diese Art von Experimenten ist eine möglichst geringe natürliche Radioaktivität erforderlich. Das gilt sowohl für das Xenon als auch für die Detektormaterialien und die Umgebung. Im Xenon ist vor allem Radon am schwierigsten zu reduzieren, und eine Verringerung auf ein akzeptables Niveau ist der „heilige Gral“ für Suchen auf dem Empfindlichkeitsniveau von XENONnT. Die XENON-Kollaboration hat nun mit großem Aufwand das Radon auf ein noch nie dagewesenes Niveau reduziert. Grundlage dieses Erfolges ist eine sehr sorgfältige Materialauswahl und der erfolgreiche Betrieb einer Destillationsanlage, die Radon aktiv aus dem Xenon entfernt.
Vor zwei Jahren gab die XENON-Kollaboration die Beobachtung eines Überschusses von Elektron-Rückstoßereignissen im Vorgängerexperiment XENON1T bekannt. Dies sind Signale, bei denen Teilchen Energie auf die Elektronen von Xenon-Atomen übertragen, welche dann nachgewiesen werden. Das Ergebnis löste großes Interesse und zahlreiche Veröffentlichungen aus, da es als Signal für eine „neue Physik“ jenseits bekannter Phänomene gedeutet werden konnte. Wechselwirkungen von solaren Axionen oder Axion-ähnlichen Teilchen könnten derartige Signale hervorrufen. Alternativ könnten Neutrinos mit einem anomalen magnetischen Moment oder andere hypothetische Teilchen des dunklen Sektors dafür verantwortlich sein.
Heute hat die XENON-Kollaboration die ersten Ergebnisse ihres neuen und empfindlicheren Experiments XENONnT veröffentlicht. Der Untergrund an Elektron-Rückstößen aus verbleibenden Unreinheiten wurde dabei auf ein Fünftel des Vorgängers XENON1T reduziert. Das Fehlen eines Überschusses in den neuen Daten deutet nun darauf hin, dass das XENON1T-Signal wahrscheinlich von minimalen Spuren radioaktiven Tritiums im flüssigen Xenon verursacht wurde, eine der damals in Betracht gezogenen Hypothesen. Gleichzeitig werden die Szenarien neuer Physik, die alternativ zur Erklärung des Überschusses herangezogen wurden, nun sehr stark eingeschränkt.
Mit diesem neuen Ergebnis, das durch eine blind durchgeführte Analyse erzielt wurde, gibt XENONnT schon mit seinem ersten Datensatz aus dem bisherigen Betrieb sein mit Spannung erwartetes Debüt. Die vorhandenen Daten werden weiter analysiert, um nach schwach wechselwirkenden massiven Teilchen (WIMPs) zu suchen, einem der vielversprechendsten Kandidaten für Dunkle Materie im Universum. In der Zwischenzeit sammelt XENONnT weitere Daten und strebt im Rahmen seines Forschungsprogramms für die nächsten Jahre eine noch höhere Empfindlichkeit an.
Aus Deutschland sind das Max-Planck-Institut für Kernphysik in Heidelberg, die Universitäten in Freiburg, Mainz und Münster sowie das KIT an XENON beteiligt. Die Mainzer Gruppe um Prof. Uwe Oberlack ist gemeinsam mit der Universität Bologna verantwortlich für den neuen Neutronendetektor und das bereits zuvor für XENON1T entwickelte und weiterhin genutzte Myon-Vetosystem. Eine von der Arbeitsgruppe entwickelte und mit Kolleginnen und Kollegen am Mainzer TRIGA-Reaktor aktivierte 37Ar-Quelle spielt bei der Kalibrierung von XENONnT wie zuvor bereits bei XENON1T eine zentrale Rolle. Sie ist essenziell, um die Energieschwelle und -auflösung gerade für die hier vorgestellte Analyse im entscheidenden Energiebereich festzulegen.